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Abstract According to Fitts’ Law, the time (MT) to
move to a target is a linear function of the logarithm of the

ratio between the target’s distance and width. Although

Fitts’ Law accurately predicts MTs for direct movements, it
does not accurately predict MTs for indirect movements, as

when an obstacle intrudes on the direct movement path. To

address this limitation, Jax et al. (2007) added an obstacle-
intrusion term to Fitts’ Law. They accurately predicted

MTs around obstacles in two-dimensional (2-D) work-

spaces, but their model had one more parameter than Fitts’
Law did and was merely descriptive. In this study, we

addressed these concerns by turning to the mechanistic,

posture-based (PB) movement planning model. The
PB-based model accounted for almost as much MT vari-

ance in a 3-D movement task as the model of Jax et al.,

with only two parameters, the same number of parameters
as in Fitts’ Law.
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Introduction

The time (MT) to move the hand from one target to another

can be predicted with considerable accuracy using one of

the most robust principles of experimental psychology,
Fitts’ Law (Fitts 1954; Fitts and Peterson 1964). Concep-

tually based on the information implicit in the definition of

target size and distance moved (Shannon 1948), Fitts’ Law
describes how movement time is affected both by the

distance to be moved and the accuracy required. Qualita-

tively, Fitts’ Law says that movements to far and/or narrow
targets take longer than movements to near and/or wide

targets.

Most demonstrations of Fitts’ Law have been confined
to the study of direct movements between targets in two-

dimensional (2-D) workspaces, following Fitts’ original

paradigm. In a representative experiment, Fitts and Peter-
son (1964) laid out a pair of rectangular targets of varying

width (W) and manipulated movement amplitude (A) by

varying the separation of the targets. Participants held a
metal stylus and moved between the targets, touching them

alternately as quickly as possible. Fitts provided a good

account of the observed movement times with the formula

MT ¼ aþ b ID ð1Þ

where ID is the Index of Difficulty,

ID ¼ log2 2A=Wð Þ: ð2Þ

Variants of the foregoing equations, known collectively

as Fitts’ Law, also account for such data in a variety of
situations (see Beamish et al. 2009; Elliot et al. 2001;

Meyer et al. 1988). However, we focus on Fitts’ original

formulation because it is most familiar and because it is
adequate for present purposes. Other formulations do not

address the main problem we are concerned with here, nor,
as far as we know, do they point to solutions of the main

problem we consider any better than does Fitts’ Law.

In Fitts’ experiments, participants could move directly
from one target to another along a linear trajectory.
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In everyday life, however, straight-line movements are not

always possible. Obstacles intrude, whether they are visible
and ‘‘cry out’’ for evasion (e.g., a spinning electric saw at

one’s workbench) or are invisible but still demand circui-

tous movements (e.g., one’s own head when one touches
one’s left ear with one’s right hand).

In an earlier study, Jax et al. (2007) asked whether MTs

could be predicted when obstacles prevented direct
movements between targets. Jax et al. had participants

perform reaching movements in a 2-D virtual-reality setup.
The participants’ displacements of a manipulandum

(remotely sensed) were reproduced on a video screen,

along with representations of the targets to be reached and
the obstacles to be avoided. Jax et al. found that Fitts’ Law

accurately predicted MT between targets when no obstacle

was present. However, Fitts’ Law did not accurately pre-
dict MT when obstacles were in the way. Jax et al.

addressed this problem by adding an obstacle-intrusion

(OI) term to the formula,

MT ¼ aþ b IDþ c OI; ð3Þ

where a, b, and c were empirical constants, and OI was the

extent to which the obstacle intruded into the workspace

(i.e., the minimum distance by which the movement tra-
jectory had to diverge from the direct path from the start to

the target). Jax et al. found that Eq. 3 provided a much

better fit (R2 = 0.87 vs. R2 = 0.22) to the obstacle-present
movement-time data because it has one more free param-

eter, allowing it to address the systematic deviation from

the prediction of Eq. 1 caused by the obstacle.
Because Jax et al. dealt with the effect of an obstacle by

simply adding a term to Fitts’ Law, they did not strive for a

mechanistic account of their formula (i.e., an account that
explicitly included internal control processes). Neither did

they tackle the problem of predicting movement times in

3-D space; their task and model was limited to 2-D (planar)
movements.

In this study, we sought to approach the latter challenges

by building on a model of motion planning developed in
our laboratory. This posture-based (PB) motion planning

model can generate multi-limb trajectories, including

multi-limb trajectories in 2 space and 3 space that are
capable of avoiding obstacles. The model is mechanistic in

the sense that it predicts outputs from hypothesized internal

control processes (Rosenbaum et al. 1995, 2001, 2009;
Vaughan et al. 2001, 2006).

The central concept of the PB model is that movements

are made to goal postures. These movements are selected
to bring required parts of the body or extensions of the

body (e.g., hand-held tools) to targets without making

unwanted collisions with intervening obstacles. According
to the model, the trajectory from the starting posture to the

goal posture is, by default, a straight line through joint

space. If the resulting trajectory needs to be modified, as in

creating a curved paintbrush stroke or avoiding an obstacle,
it can be shaped by adding a back-and-forth movement to

the main movement. This back-and-forth movement is

made from the start posture to a ‘‘bounce’’ posture and
back. The reversible movement adds no net displacement

to the main movement, and the main movement’s shape is

determined by which bounce posture is used.
Consider how the foregoing account of movement

shaping might lead to predicted MTs. Suppose the ampli-
tude, B, of the bounce movement is the distance between

the spatial midpoint of the main movement and the maxi-

mum desired deviation from the direct movement.1 The
total distance moved then consists of two terms, A and 2B,

where A is the amplitude of the direct movement (as in

Fitts’ Law) and B is the amplitude of the reversible bounce
movement. The accuracy required of the direct movement

is W, as in Fitts’ Law. Using Fitts’ Law, we can then write

IDPB ¼ log2 2 Aþ 2B½ '=Wð Þ; ð4Þ

MT ¼ aþ b IDPB: ð5Þ

The number of empirical constants in Eq. 5 is one less

than in Eq. 3. This greater parsimony makes the PB-based
model preferable to the model of Jax et al. because

increasing the number of model parameters always results

in a better model fit.
The goal of this study was to test the PB model’s pre-

dictions about the time to complete both direct and

obstacle-avoiding movements, as quantified in Eqs. 4 and
5. To pursue this goal, we asked participants to touch two

targets in alternation using a hand-held pointer and recor-

ded the time it took to complete those movements. In
separate sets of trials, we varied the movement amplitude

(A), the diameter of the targets (W), and the obstacle’s

intrusion into the movement (B). We asked participants to
use a hand-held pointer so the data from this experiment

could be compared to data in future studies where the

properties of the pointer might be varied (e.g., its length or
mass distribution).

Methods

Participants

Eleven participants (5 men and 6 women aged 19–21

years) served after giving informed consent. Two reported
being left-handed, but all participants performed with the

right hand. All procedures were reviewed and approved by

1 In the foregoing, B must be at least as large as the distance the
obstacle intrudes (OI) into the workspace. For convenience of
exposition, we assume that B simply equals OI.
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the Hamilton College Institutional Review Board in con-

formance to the 1964 Declaration of Helsinki.

Apparatus and procedure

Participants sat in front of a bookcase from which two

parallel rods, 22 cm long, extended horizontally 91 cm

above the floor (see Fig. 1a), separated by a distance, A, of
20, 41, or 81 cm. A pair of targets (either ping-pong balls,

whose diameter, W, was 4.0 cm, or tennis balls whose
diameter, W, was 6.4 cm) was mounted on the ends of the

rods, approximately at the participant’s shoulder level.

As shown in Fig. 1b, a vertical pole (diameter 1.2 cm)
stood midway between the targets in one of four positions:

18 cm behind the front edge the targets, midway between

the targets, 13, or 25 cm in front of the targets. In a fifth
condition, there was no obstacle. We included the condi-

tion in which the pole stood 18 cm behind the direct path

between the targets to see whether the mere presence of the
obstacle would serve as a distracter (Tipper et al. 1997).

Participants held a 40-cm baton (an aluminum rod 1 cm

in diameter, weighing 195 gm), whose form-fitting handle
afforded a unique grip for the hand. A Nest of Birds

(Ascension Technology) motion-capture sensor mounted

on the baton recorded the tooltip locations at 101 samples/s.
Participants were instructed to start each trial with the

tooltip touching one target, move as quickly as possible to

the other target in response to a tone, while maintaining
accuracy, and then wait with the tool touching that target

until the next tone. The tones cued 8 movements per trial,

at intervals that varied between 2.5 and 3.5 s, intervals
intended to exceed the longest MT. If the participant

moved prematurely, the move was repeated. The MT of

each move was computed from the instant the tooltip
velocity first exceeded 12.9 cm/s (the lowest value that

reliably separated all moves) until the tooltip velocity fell

below that level, and the median MT of each series of eight

moves was computed.
Each session had 2 blocks of 30 trials each (3 dis-

tances 9 2 target diameters 9 5 obstacle locations), giving

480 total moves. Target sphere diameter and distance were
counterbalanced within each block; obstacle locations were

randomized for each target and distance combination.

Participants began all trials of one block on the left target,
and those of the other on the right, with order counter-

balanced across participants.

Results

Movement times

The mean MT across all conditions was 511 ms (range

258–720 ms). Figure 2a shows the observed MT between

the large targets and between the small targets for the three
distances and five obstacle conditions. MTs between the

small spheres were longer than MTs between the large

spheres, F(1, 10) = 10.44, p\ 0.01, consistent with the
hypothesis that movements requiring more accuracy are

executed more slowly than movements requiring less

accuracy. Similarly, larger-amplitude moves took longer
than smaller-amplitude moves, F(2, 20) = 460.15,

p\ 0.001. Finally, the larger the obstacle intrusion on the

direct path, the longer the MTs, F(4, 40) = 388.51,
p\ 0.001. When the obstacle was not in the path of

movement, the [-18] intrusion condition, MTs were not

different from the control condition, t(10) = 0.32, ns. This
outcome indicates that the mere presence of the obstacle

did not affect performance. All other pairwise comparisons

defined with respect to obstacle position were statistically
significant, all t(10)’s[ 7.00, all p\ 0.001. There was a

significant interaction of distance and obstacle condition,

Fig. 1 Experimental setup. a A participant performing the task.
b Top view of the workspace showing the width (W) of one type of
target (tennis balls), the distance (A) between the target centers, and
four values of obstacle intrusion (OI) achieved by placing a vertical

pole midway between the targets in each of four positions. In a
control condition, no pole was present. The dotted line shows an
idealized tool tip trajectory from one target to the other
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F(8, 80) = 37.01, p\ 0.001, reflecting the greater effect

of obstacle intrusion on MTs at the shorter inter-target
distances than at the longer inter-target distances.

Modeling

In the no-obstacle [control] or non-intruding obstacle

[-18] intrusion conditions, the traditional Fitts’ Law
equation (Eq. 1) was an adequate predictor of MT:

MT = -58 ? 117 9 ID, R2 = 0.94. However, when all
the obstacle conditions were included, this equation fit the

data much less well: MT = 248.5 ? 90.5 9 ID,

R2 = 0.31. By contrast, the modified OI model advanced
by Jax et al. (2007; Eq. 3) fit the data of all obstacle con-

ditions with significantly greater precision than did the

traditional Fitts’ Law equation

ðzð29Þ ¼ 4:27; p\:001Þ : MT

¼ 143:6þ 90:5( IDþ 21:8( OI;R2 ¼ 0:90:

The most critical question was how well the PB model
(Eq. 5) fit the MT data. The PB model fit the data of

all obstacle conditions: MT = -131 ? 141 9 IDPB,

R2 = 0.87 (Fig. 2b). This fit was significantly better than
the fit of the unelaborated Fitts’ Law equation,

z(29) = 3.76, p\ 0.001. Most importantly, the fit of the

PB model was not significantly worse than the modified OI
model, using a partial F test to take account of the

additional free parameter of the modified OI model,

F(1, 26) = 0.87, ns.

Discussion

This study extends Fitts’ Law to obstacle-avoidance

movements in a 3-D workspace. Participants moved a
hand-held baton back and forth between pairs of targets of

different sizes, separated by different distances, and with

an obstacle at various distances in front of the targets. We
focused on the timing of the contacts on the targets by the

participant’s hand-held tool.

As expected from Fitts’ Law, we found that MT was
larger for small targets than for large targets, and larger for

large movements than for small movements. We also found

that the greater the intrusion of the obstacle into the direct
path between the targets, the longer the movement time.

The latter result is broadly consistent with Fitts’ Law,
which says that longer movement paths should lead to

longer MT. However, Fitts’ Law does not explicitly say

anything about the lengths of actual movement paths, only
the lengths of the straight-line distances between targets.

Significantly, Fitts’ Law is expressed solely in terms of

extrinsic variables, though its predictive focus is on the
time to complete body movements. At the same time, given

the conceptual origin of Fitts’ Law in information theory, it

is consistent to frame the increased movement time in
terms of the greater information needed to move to a goal

around an obstacle than to move directly to the goal. To

summarize, we asked how the timing of body movements
in the Fitts reciprocal movement task is affected by the

presence of an obstacle standing midway and with varying

degrees of intrusiveness between the targets to be touched.
The model we tested was one that explicitly focuses on the

planning of body movements, the posture-based motion

planning (PB) model of Rosenbaum et al. (1995, 2001,
2009) and Vaughan et al. (2001, 2006). In the present

obstacle-avoiding task, we found that this model accurately

predicted MTs, doing as well in accounting for MTs as a
model we previously considered that had one more

parameter, the model of Jax et al. (2007).

Several issues remain. One is how well the PB model
accounts for the movement times in a 2-D workspace

previously reported by and modeled by Jax et al. (2007). If

Fig. 2 Observed and predicted data. a Mean observed movement
time (±1 SE) as a function of target size (W), movement amplitude
(A), and obstacle intrusion (OI). Obstacles in the (0), (13), and
(25) conditions impeded direct movement to the target. b Mean

observed movement time as a function of the Index of Difficulty
(IDPB = log2(2[A ? 2 B]/W), where A is movement amplitude, B is
obstacle intrusion, and W is target width
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the PB model accounts for MTs of obstacle-avoidance

behavior in a 3-D workspace, as shown here, it should also
account for MT of obstacle-avoidance behavior in the 2-D

workspace. We fitted the PB model to the data of Jax

et al. and found that it fit the data quite well: MT =
-43.6 ? 266.5 9 IDPB, R2 = 0.82. This R2 value is

comparable to the R2 value of the model of Jax et al.

(R2 = 0.89), even though the PB model has one fewer
parameter.

Because we contrast the present task from the task used
by Jax et al. (2007) in terms of 3-D versus 2-D, it is ger-

mane to consider the importance of describing a task as

2-D or 3-D (see also Murata and Iwase 2001). The task of
Jax et al. (2007) was 2-D in the sense that the targets were

circles occupying a single plane and the virtual manipu-

landum moved in that same plane. By contrast, in this
experiment, the task was 3-D in the sense that the targets

were spheres and the manipulandum was a tool whose 6

positional degrees of freedom could vary freely.2

Despite these seeming differences between the 2-D and

3-D tasks just discussed, there is an important sense in

which almost no perceptual-motor tasks are really linear
and, just as importantly, almost no perceptual-motor tasks

really escape obstacle-avoidance requirements. For exam-

ple, the participants in Fitts’ original experiments (Fitts
1954) used a metal stylus to contact each target. They had

to make manual arcing movements to bring the stylus in

contact with each target, which was a metal conductive
plate. If the participants in the 1954 study had simply slid

the stylus directly between the target plates, the stylus

would have touched an ‘‘undershoot’’ detection plate
before touching the target plate. Thus, even in the original

experiments of Fitts, 3-D displacements of the stylus were

required to prevent collision with obstacles.3

This last point bears on a final issue, concerning the role

of intrinsic versus extrinsic variables in account of human

motor control. We observed above that Fitts’ Law is
expressed in extrinsic terms even though its main focus is

the time to complete body movements. The fact that Fitts’

Law works as well as it does—indeed, the fact that it is
called a Law—attests to the fact that it predicts MTs very

well, notwithstanding its inability, shown here and in the

Jax et al. (2007) study, to account for MTs when obstacle-
avoidance behavior is a major or explicit challenge rather

than a minor or implicit challenge, as in the original reci-

procal tapping experiments of Fitts (1954) and Fitts and
Peterson (1964).

One might ask whether the model offered here is actu-

ally ‘‘more intrinsic’’ than Fitts’ Law. After all, we
expressed the extra displacement required by obstacle

avoidance not in terms of what the arm must do but rather

in terms of where the obstacle was located. The clearance
around the obstacle might have differed if the non-pre-

ferred hand had been used (Worringham 1993) and the
postures adopted might have changed over the course of

successive reaches (Fischer et al. 1997). We did not ana-

lyze those features of performance for this report, however,
though in principle we could have done so. It is always

possible to investigate performance in greater and greater

detail, as there are always sources of uncontrolled variation
in actual performance. Even Fitts (1954) could have ana-

lyzed other movement properties (e.g., exact position of the

stylus on each target, the angle of the stylus as it contacted
each target, the angles of the arm joints at the moments of

contact) but found impressive regularity of performance,

summarized in his famous Law, by taking into account
only the effector tip.

Our strategy was similar. Our justification for the choice

of model we made, apart from the fact that it employs one
fewer parameter than the model our group pursued before

(Jax et al. 2007), is that it is important in applied contexts

to predict how performance will be shaped by features of
the external environment. Thus, the input to the model can

be expressed in extrinsic terms, though the model should be

able to accommodate performer characteristics. The PB
model can accommodate such features, as discussed in

detail in its earlier presentations (Rosenbaum et al. 1995,

2001, 2009; Vaughan et al. 2001, 2006). A model that
represents the interface of the external environment to the

capabilities of the body accounts not only for data of the

kind studied here, but may also be useful for a variety of
practical purposes—for enabling robots to generate effi-

cient movements, for optimizing performance in human–

computer interaction, for helping designers create safe
habitats, and so on.

Future research can focus on movement timing and
body kinematics together. This study suggests that the PB
model may hold promise in this regard. So do other models

of obstacle avoidance that were not considered here,

principally because no other model that we are aware of
predicts body positions rather than just end-effector posi-

tions in manual obstacle-avoidance tasks (but see Cruse

et al. 1993). Our decision to focus on the PB model was
based on the idea that the PB model is the most complete

model of manual obstacle-avoidance behavior that we

know of. We do not mean to suggest that other models that
posit via-point specification as a means of obstacle

2 The six positional degrees of freedom of a rigid object are the x, y,
and z values of a reference point within the object such as its center of
gravity, and the object’s pitch, roll, and yaw.
3 It is not unusual for a target to be an obstacle. When reaching for a
glass, for example, the glass is an obstacle vis à vis the dorsal side of
the hand and fingers. This is why the hand must move around the
glass before closing in on it. The PB model was designed to generate
such behaviors and simulates them accurately (Rosenbaum et al.
2001).
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circumvention (Bullock et al. 1999) or that focus on

resistance to inertial perturbations (Sabes et al. 1998), for
example, could not account for the MT reported here as

well as the PB model does. These and other models,

operating at somewhat different levels of analysis, have the
common goal of understanding movement timing pro-

cesses, for which no single approach is so powerful that it

excludes others.
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